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I. INTRODUCTION 

The possibility that the baryon number of the Universe can be generated at the 

electroweak phase transition has triggered a lot of interest in understanding the dynamics 

of weakly first-order phase transitions in the early Universe. Since the original work of 

Kuzmin, Rubakov, and Shaposhnikov’ a great deal of effort has been dedicated to the 

construction of viable models that could generate the required baryon asymmetry.* 

As is well-known, one of the necessary ingredients of a successful baryogenesis scenario 

is a departure from equilibrium. Current scenarios of electroweak baryogenesis rely on 

the first-order nature of the phase transition to generate the required out-of-equilibrium 

conditions in the decay of the symmetric metastable phase by the nucleation of .bubbles 

of the broken-symmetric phase. Baryon number is generated by the expansion of the 

bubble wall either by the scattering of heavy fermions off the ~all,~ or by the unwinding 

of topologically non-trivial configurations in its neighborhood.’ 

Although it is now generally believed that a successful baryogenesis scenario at the 

electroweak scale requires a departure from the minimal electroweak model, understand- 

ing the dynamics of the electroweak phase transition is a crucial ingredient for any viable 

scenario. One of the main obstacles to a comprehensive study of the electroweak phase 

transition is our lack of knowledge of the correct effective potential that describes the 

system in the vicinity of the critical temperature, Tc. Problems due to infrared diver- 

gences have been known since the original work of Dolan and Jackiw and Weinberg.5 

For the current limits on the masses of the Higgs and top quark, the l-loop effective 

potential predicts a weak first-order transition. 6-a This is somewhat unsettling, because 

we know that weak first-order transitions have large infrared divergences which are not 

accounted for by the l-loop calculation. In other words, if the l-loop potential predicts 

a weak first-order transition, chances are that the actual transition is even weaker, if 
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not actually second order. It is thus important to incorporate the infrared corrections 

to the effective potential. In fact, a few recent works have incorporated some infrared 

corrections caused by the vanishing of vector boson masses near 4 = 0 by summing over 

ring, or daisy, diagrams.’ As clearly shown in the paper by Dine et al.,8 these correc- 

tions decrease the effective tunneling barrier for decay, weakening the strength of the 

transition. The validity of the ring-improved effective potential for the temperatures of 

interest relies on cutting off higher-order contributions by invoking a non-perturbative 

magnetic plasma mass, M,!,,., for the gauge bosons such that the loop expansion pa- 

rameter, g2TIMplarmar is less than 1. Since this non-perturbative contribution is not well 

understood at present, one should take the results from the ring-improved potentials with 

some caution.g 

In addition to infrared problems caused by the vanishing of the vector boson masses 

in the symmetric phase, for sufficiently weak transitions we point out that one must take 

into account infrared divergences caused by the small Higgs maSs if MH < T. We will 

review the well-known formalism for field theory at high temperatures. We point out 

that the loop expansion parameter diverges as the Higgs mass vanishes. This means 

that diagrams contributing to the l-loop potential that are unimportant at either high 

or low temperatures may be dominant around the critical temperature. For instance, 

at zero temperature the loop expansion parameter for the Higgs loops is A, the Higgs 

self coupling. However for the 3-dimensional effective field theory at high temperature, 

the loop expansion parameter is XT/MM(T) for the Higgs loops. For T > MH(T), the 

loop expansion is not under control. We point out that this is exactly the situation 

in the standard electroweak model between the critical temperature and the spinodal 

temperature where MH(T) vanishes. 

In this paper, we will attempt to estimate the magnitude of the infrared corrections 

to the l-loop electroweak potential near the critical point using a familiar technique from 
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condensed-matter physics. In particular, we will argue that near the critical point it is 

possible to estimate the fluctuations in the spatial correlations of the magnitude of the 

scalar field by using well known results from the theory of critical phenomena. We will 

show that the effective corrections to the critical exponent that controls the behavior of 

the correlation length for the electroweak model can be approximated by considering an 

associated Ginzburg-Landau (G-L) model just above its critical temperature. This ap- 

proach has been successfully implemented by De Gennes in the study of liquid crystals,iO 

and recently by Fern&rider. et al. in the study of the two-dimensional 7-states Potts model 

which exhibits a weak first-order transition. I1 In order to make our approach clear it 

is instructive to examine the critical behavior of the l-loop effective potential for the 

electroweak model. 

The l-loop finite-temperature corrections to the electroweak potential have been stud- 

ied in detail in the literature, most recently by Anderson and Hall6 They showed that a 

high temperature expansion of the l-loop potential closely approximates the full l-loop 

potential for MB S 150 GeV and MT 5 200 GeV. (It is important to differentiate be- 

tween the finite temperature Higgs mass, M,,(T) and the zero-temperature Higgs mass, 

MH.) They obtain for the potential 

V&c$,T) = D (T’ - T;) 4’ - ET@ + &J4, 

where the constants D and E are given by D = [6(M~/u)~ + 3( Mz/u)* + 6( MT/O)*] /24, 

and E = [6(M~/u)~ + 3(M~/o)~] /127r. H ere Ts is the temperature at which the origin 

becomes an inflection point (i.e., below T, the symmetric phase is unstable and the field 

can classically evolve to the asymmetric phase by the mechanism of spinodal decompo- 

sit,ion), and is given by 

T2 = &M& - 8Ba2)/4D , (1.2) 

where the physical Higgs mass is given in terms of the l-loop corrected X as Mi = 
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(2X + 12B) 2, with B = (6&f& + 3Mj - 12M$) /64a2a4. We use Mr.+, = 80.6 GeV, 

Mz = 91.2 GeV, and o = 246 GeV. The temperature-corrected Higgs self-coupling is 

where the sum is performed over bosom and fermions (in our case only the top quark) 

with their respective degrees of freedom gs(F), and lncs = 5.41 and lnc~ = 2.64. 

Apart from Ts, there will be two temperatures of interest in the study of the phase 

transition. For high temperatures, the system will be in the symmetric phase with the 

potential exhibiting only one minimum at (4) = 0. As the Universe expands and cools 

an inflection point will develop away from the origin at 

h = ~J~~TI/~XT, (1.4) 

where Tr is given by 

T, = Tz/&ii$i$. (1.5) 

For T < T,, the inflection point separates into a local maximum at c$- and a local 

minimum at I$++, with 4~ = {3m f (9E2p - 8&-o(p - 7$)]“*}/2xT. At the critical 

temperature 

Tc = T~/,/W, (1.6) 

the minima have the same free energy, V~w(qb+,Tc) = l&(O,Tc). (Note that V(4,T) 

is the homogeneous part of the free energy density whose minima denote the equilibrium 

states of the system. Accordingly, in this work we freely interchange between calling 

V(C#J, T) a potential and a free energy density.) 

In Fig. 1 we show the electroweak potential at temperatures T >> T,, T,, T,, T2, and 

T = 0. The difference between the temperatures Tl, Tc, and T2 is determined by the 

parameter 

I = E*IXTD. (1.7) 



This parameter is shown in Fig. 2 for different values of MH and MT. Clearly z < 1 for 

the minimal electroweak model, so we can write the approximate relations 

Tc N T2(1+ z/2) 

Tl N T2(l + 9x/16). (1.8) 

It is useful to understand why the transition is first order; i.e., why at Tc there is a 

barrier between the high-temperature phase and the low-temperature phase. It has been 

appreciated for a long time that a pure Q4 theory is equivalent to a Ginzburg-Landau 

theory, which has a second-order phase transition. The reason the electroweak theory 

is first order, rather than second order, is that there is an additional attractive force 

between scalar particles mediated by the vector bosons. This additional attractive force 

leads to a condensate of the Higgs field at a temperature slightly above T2.8 T2 and TC 

would be the same (a second-order transition) in the absence of gauge boson interactions. 

(Note that as E + 0, i.e., as vector interactions are turned off, TC + T2.) 

The whole picture of bubble nucleation relies on the behavior of V&qS, T) between T, 

and T2. In the standard picture, one assumes that the system is in a near-homogeneous 

state around its equilibriumvalue (in this case (4) = 0), so that large thermal fluctuations 

in the spatial correlations of 4 are exponentially suppressed above the scale of the thermal 

correlation length, e(T), 

[-2(T) ~ ,,,f;(T) = a2hW(g; (d)‘T), ( 1.9) 

In this case, for some temperature TC > T > T2, critical bubbles of the bra: ken- 

symmetric phase appear and expand. They eventually collide with other bubbles, con- 

verting the symmetric phase into the broken-symmetric phase. 

For the electroweak potential the difference between Tc and T2 is very small: %(Tc) E 

(Tc - Tz)/(Tc + T2) N x/4 < 1. The transition is predicted to be weakly first order. 
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As mentioned above, infrared corrections to the l-loop potential can be very important 

due to its flatness (small mass) around C$ = 0. As we shall see below, the loop expansion 

parameter for the Higgs loops at high temperatures is not A, but ATT/M,,(T). We 

can estimate where this will become large for the standard electroweak model. Before 

starting, it is helpful to note that the temperature-corrected Higgs self-coupling, AT, 

is approximately equal to the tree-level Higgs self-coupling, Xs = Mi/2a2. (It is easy 

to see why the temperature-dependent logarithmic correction approximately cancels the 

zero-temperature l-loop logarithmic correction if one adopts the renormalization scheme 

of Ref. 8.) For the electroweak potential near Tc, Mi(Tc) = 2D(pC - c). Since 

Xj@ = 1 - E’/ATD, M”(Tc) = TcEfi. Therefore at Tc the loop expansion 

parameter is XTTC/MH(TC) = Xy*/Efi. Now as discussed above, to a reasonable 

accuracy XT = Mi/20* (here, of course, MH is the zero-temperature mass). Thus 

ATTc/MH(Tc) N Mi/4Ea3 N 1.68(M~/lOO GeV)3. (1.10) 

For MH greater than about 84 GeV, at Tc the expansion parameter exceeds unity. Be- 

tween Tc and T2 the mass goes to zero, so the corrections are even larger. 

The question we would like to address in this paper is, can we estimate the magnitude 

of the infrared corrections in a simple way? Since we are interested in the behavior of 

the system around (4) = 0 for Tc 1 T 2 T2, we will show that it is possible to map the 

electroweak potential in a smull neighborhood around c5 = 0 to an effective Ginzburg- 

Landau (GL) theory which exhibits a second-order phase transition at T2. The critical 

behavior of this model has been extensively studied in the seventies using renormalization 

group (RG) techniques pioneered by Wilson. r* In particular, infrared corrections to the 

G-L model which are important around the critical temperature have been computed 

using E-expansion techniques. The net result is that the magnitude of fluctuations on 

the spatial correlations of the order parameter calculated by mean-field theory (which we 
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will show is equivalent to the l-loop potential) is largely underestimated. We will obtain 

the corrections to the G-L model and map it back to the electroweak potential in an 

attempt to estimate the infrared corrections to the l-loop result. We will show that the 

corrections to tunneling rates can be very large, indicating the failure of the naive l-loop 

potential to describe the dynamics of the transition. 

This paper is organized as follows. In Section 2 we follow Ginsparg13 and show 

how we can study the finite temperature behavior of a field theory in 4 dimensions 

(d = 4) by looking at the static (zero Matsubara frequency) mode of an effective theory 

in d = 3. We then study the critical behavior of a G-L model in d = 3, emphasizing 

the infrared corrections to the correlation length obtained by E-expansion methods. In 

Section 3 we establish the connection between the critical behavior of the electroweak 

potential and an associated G-L model. We do it using two different G-L models, 

showing that they give the same results. We obtain an s-corrected mass and study its 

effects on the nucleation rate. In Section 4 we strengthen our arguments by estimating 

the thermal dispersion of the scalar field around the origin and by repeating our recent 

calculation for the nucleation rate for non-perturbative sub-critical fluctuations. Based 

on the infrared corrections obtained in Section 3, we argue that sub-critical bubbles offer 

a simple estimate of the failure of the l-loop result. We end in Section 5 with general 

comments on the nature of weak first-order transitions. 

II. CRITICAL BEHAVIOR OF & FIELD THEORY 

In order to study the critical behavior of a @4 scalar field theory we follow Ginsparg13 

in reducing the theory to an effective theory of the static mode of the scalar field in 

d = 3 dimensions. The generating functional in the presence of a source J(z) for a zero 
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temperature scalar field theory in Euclidean (t = --ir) space-time is (we use fi = c = 1) 

z[J] = /ID+] exp { - / & [k (a4)* - km*+* + +] - / d%Jb} (2.1) 

In order to study the theory at finite temperature we take the Euclidean time to be 

periodic in p, and sum only over periodic paths with q5(0, x) = +(r, x), as is well known5 

Due to the periodic behavior in r we can expand the scalar field as 

~(T,x) = ~“~~J~exp(iWnT+ik.X)~“(k); w, = 2*n/P. P-4 

By resealing the field q&(k) by p-l/*, and separating the static (n = 0) mode from the 

rest, we obtain, 

-WI = /,.,,PW exp (- /, i (k’ - m*) 4dWd-k) 

- “ToL $ [P*7dP)* + k* - m*] An(k)L(-k) + / J4 

-y E 
n,n’,n”=-ce 

k,,,,, ~“(k)~“~(k’)~“,,(kn)~-n-n~-,~~(-k - k’ - k”)}(2.3) 

where Jk = J d%/(2a)3. The effective d = 3 theory is obtained by summing over aI1 the 

n # 0 modes. Perturbatively, this means that all internal lines in the Feynman diagrams 

will correspond to sums over the n # 0 modes, and the external lines are given only by 

the n = 0 mode. This way the higher modes will contribute to the mass, wave-function 

renormalizations, and to the N-point function for the effective theory of the n = 0 

mode. It is then possible to construct an effective Lagrangian & for the d = 3 theory 

by a systematic perturbation expansion in A. The leading contribution to the 2-point 

function is given by the tadpole diagram obtained by summing over the higher modes in 

the Feynman propagator. One obtains to leading order, 

L.R=~ -m*+$+... &(k)&(-k)+ VP T&++... 

Note that in the effective d = 3 theory the coupling X is dimensionful with the tem- 

perature naturally setting its dimensionality. This temperature dependence will not be 
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relevant for the discussion of the critical behavior of the theory and will be absorbed into 

the definition of A. The static critical behavior of the original d = 4 theory is completely 

embodied in the effective theory for the n = 0 mode in d = 3. To leading order in A, this 

theory exhibits a phase transition at a critical temperature 

T; = l/P; = y (1 + O(X) + .). (2.5) 

It turns out that the critical behavior of the theory above, known as the G-L model, 

has been extensively studied using the s-expansion to incorporate higher-order infrared 

effects. From & we can obtain the effective 3-dimensional potential to leading order in 

4 

V&(4,T) = Td2 + $c$~; m*(T) E i (T’ 1 T:) , (2.6) 

where dx) is the static scalar field, which is the relevant order parameter in equilibrium. 

As is well-known,‘4 this theory exhibits a second-order phase transition at Tc; above 

Tc the left-right symmetry is exact and the equilibrium value of 4 is (c#J)=O. Below 

TC the symmetry is broken and the equilibrium value of 4 is (4) = &[m*(T)/X]“‘. 

In the thermodynamic limit, the system will eventually settle at one value of (p, since 

any interface is energetically unfavored. Of course (4) only gives information about the 

homogeneous behavior of 4. Typically, there will be fluctuations around (4) which are 

correlated within the correlation length scale defined in Eq. (1.9). For temperatures 

above and below TC (denoted by + and - respectively) we obtain from Eq. (2.6) 

t;*(T) = m*(T) = ;T;(l + T/Tc)* (; 12) , (2.7) 

and 

C*(T) = -2m*(T) = iTi(f + T/T& (2.8) 
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This is the well known result from mean-field theory, usually expressed as 

~MF(T) m IT -TcI-"; lJ = 112, (2.9) 

where the critical exponent v expresses the singular behavior of e(T) as T -+ Tc both 

from above and below. In Fig. 3 we show the results for a dynamical simulation of a d = 2 

G-L model for various values of T. r5 It is clear from this simulation that fluctuations 

around the equilibrium value of C$ are indeed very large near Tc, being considerably larger 

than the mean field results. Thus, the assumption of near homogeneity is not valid if T 

is sufficiently close to Tc. 

In order to handle the infrared divergences that appear near Tc, the RG is used to 

relate a given theory to an equivalent theory with larger masses and thus better behaved 

in the infrared. Within the E expansion, one works in 4 - E dimensions and finds a fixed 

point of order E of the ,RG equations, taking the limit E + 1 in the end. We refer the 

interested reader to Ref. 14 for details. To second-order in E one obtains, 

11 7 
v = 5 + 12’ + 162&Z N 0.63. (2.10) 

The corrected critical exponent embodies corrections coming from the infrared diver- 

gences near Tc. The E-corrected correlation length can be written above Tc as 

[t:(T)]-l = fiTc(I +T/Tc) (;;;)““. 

Below TC we obtain, 

[W’)]-l = &T~ (I+ T/T~) (IT; ?I)“‘“, 
C 

(2.11) 

(2.12) 

so that, in both cases the ratio between the mean field and s-corrected correlation lengths 

can be written as 

<MFG? 

t-Q’) 
= $13(T); &f) f IT - Tcl 

T+Tc. 
(2.13) 
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If we are interested in studying the behavior of the theory above To we can use the 

fact that c(T) = m -i(T) to obtain an s-corrected mass, 

m,(T) = 7p3(T)m(T). (2.14) 

A similar result can be easily obtained below Tc. 

III. INFRARED CORRECTIONS TO THE ELECTROWEAK POTEN- 

TIAL 

In this section we will argue that we can obtain information on the critical behavior 

of the electroweak phase transition between TC and Ts by studying a G-L model with 

a critical temperature that we take to be Tz. This is possible since Tc is so close to T2 

due to the weakness of the transition already at l-loop level. [See Fig. 2.1 Thus, we 

will estimate the infrared corrections to the electroweak model by looking at the G-L 

model around Tc. Clearly this is only an approximation to treating the full problem of 

incorporating the E-expansion for the standard model. However, from the nature of the 

potential, we claim that our results are a lower bound on the true infrared corrections, 

which we conjecture will be even more severe than what we will estimate below. 

3.1 MATCHING TO A G-L MODEL ABOVE ITS CRITICAL TEMPERATURE 

We start with the simplest possible approach, by studying the G-L model defined by 

the free energy density, 

I’&(& T) = qcj2 + $d4; m’(T) E 20 (T’ -T;) , (3.1) 

where D, T2, and XT are defined in the Introduction. This is simply V,,(qS,T) with 

E + 0. This model exhibits a second-order phase transition at T = T2. Recall that this 
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is the temperature at which the barrier disappears in the l-loop electroweak potential. 

[See Fig. 1.1 Thus, we are interested in the behavior of this model for temperatures above 

T2. The claim is that for T 5 TC and in the neighborhood of (4) = 0 this model can be 

used to give us an estimate of the infrared corrections to the electroweak potential. Note 

that our choice of the mass is such that the correlation length for fluctuations around 

equilibrium is the same in both models. In Fig. 4 we compare the electroweak potential 

and the G-L model discussed above for T = TC and T = Tp. Note how the behavior 

around ($) = 0 is well-matched by the G-L model 

From the results of the previous section, the s-corrected mass is 

m:(T) = 20$‘“(T) (T’ - T;) ; ,&I-) = IT - T21 
T-kTz. 

The value of Q(T) at T = TC can be found using TC and Tz from Eqs. (1.6) and (1.2): 

rh(Tc) = m. (3.3) 

In Fig. 5 we show mz(Tc)/m*(Tc) = $26(T ) c as a function of the Higgs mass for several 

values of the top mass. It is clear that the infrared corrections are quite large for all 

values of parameters probed. Below TC the potential is even flatter near the origin and 

the infrared problem is even more severe. For larger values of I$ the cubic term becomes 

important increasing the flatness of the electroweak model compared to the GL model 

(leading again to more severe infrared problems). Before we go on to discuss possible 

implications of the s-corrections to the electroweak phase transition we study the same 

problem with a different GL model next. 
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3.2 MATCHING WITH G-L IN THE PRESENCE OF EXTERNAL FIELD 

Information about the critical behavior of the electroweak transition by studying 

a simpler system can be obtained introducing a new field such that the electroweak 

potential (neglecting the left-right symmetry!) becomes equivalent to a G-L model with 

an external field which is temperature dependent. In other words, we can transform away 

the cubic term in VEW(C$, T) by defining 

4’ = 4 - ETjX=, 

such that 

V’(4’,T) = AT (T’ -T;) 4’ + B (T’ - Z$ @ + $qY4 + . . 

where . . represents terms independent of # and 

A = y (I- E2/bD) ; B = D (1 - 3E*/XrD). 

The temperature Yc appearing in Eq. (3.5) is given by 

- T;(l + 3z/2). 

(3.4) 

(3.5) 

(3.6) 

The potential V’(#,T) is shown in Fig. 6 for several values of the temperature. The 

coefficient of the linear term can be interpreted as a temperature-dependent external 

field which vanishes at Tc. At TC the potential has a double-well shape, so that below 

Tc the minimum at & becomes metsstable, while the barrier separating 4: from the 

global minimum at e$ disappears at T2. Also, one can see that the location of the 

minimum at 4: is roughly temperature independent. Hence, the system exhibits the 

same critical behavior around 4: as the electroweak model around 4 = 0. We can see 

this by evaluating 

m2 (T) = a2V’((4) = 4X-L, T) 
a#‘2 

= 2B (T’ -T;) + 3X&. (3.8) 
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Using that at TC the potential is a double-well and that c#J’- is roughly temperature 

independent, we find that 

2BGT - T:) “* 
XT 1 (3.9) 

Since E2/X=D < 1 for all values of the Higgs and top masses we consider, we can write 

m?(T) N 20 (T’ - Ti) (1 - qE2/A~D) ZT m*(T), 

where m2(T) is defined in Eq. (3.1). Since we have shown that m!(T) 1: m2(T), it is 

legitimate, within our framework, to use the results from the s-expansion for the G-L 

model of # directly into the electroweak model for T 5 TC and in the neighborhood of 

4 = 0. As the relevant critical temperature of this G-L model is also T2, the results are 

identical to those of Eq. (3.2). 

Again we stress that this is not intended to be an exact calculation of the infrared 

corrections to the electroweak potential, but simply an estimate of the magnitude of these 

corrections for small 4. As mentioned earlier, we expect the true corrections to be even 

more severe that what we obtained above. 

As a possible application of the above results, we estimate the corrections to the I- 

loop tunneling rate using m:(T). This is clearly an approximation since we have stressed 

that our approach is only valid in a small neighborhood of (4) = 0, and should not be 

trusted for 4 2 D(p - q)/ET, for a given T. We want to estimate how severe the 

corrections to tunneling could be due to the smallness of the curvature at the origin. The 

finite-temperature tunneling rate, r 0: exp(-,73/T), f or a theory with a potential like the 

electroweak potential has been shown by Dine et a1.s to have an approximate analytical 

expression for the exponent given by 

s3 - = 4.85$9(a) bm’(T) 
T 

a = 2E2T2 , (3.11) 

14 



with 

1+ -=+ o.26 
(1 -a)* I 

(3.12) 

However, according to our arguments, for T < TC the effective curvature of the po- 

tential around the equilibrium point is smaller than what is estimated from the l-loop 

approximation. The effective tunneling barrier is then also smaller, and the kinetics of 

the transition may be different from the usual nucleation scenario. [An interesting pos- 

sibility is that the critical temperature for the corrected theory is larger than the l-loop 

result. This is also true for the results of Refs. 7 and 8, where the cubic term is weakened 

due to the infrared corrections coming from the gauge bosons. However, as we remarked 

earlier, our method is only applicable in a small neighborhood of 4, and we cannot use 

it to study the potential away from the origin which is necessary to predict TC in a first 

order phase transition. We are presently investigating this question.] Taking into account 

the E-corrections above, the exponent becomes, 

s;- m3(T) 
T - 4.85$39(T) -f (4 ; 

km*(T) 
0, = $.26(T) 2E2TZ (3.13) 

Clearly use of the E-expansion improved mass can have an enormous effect upon the 

tunnelling rate, changing the exponent by a large factor. 

IV. THERMAL FLUCTUATIONS AND SUB-CRITICAL BUBBLES 

In this section we discuss how it is possible to examine the strength of a first-order 

transition by two simple methods. The first method, introduced by one of us,16 relies on 

estimating the magnitude of the thermal dispersion of the order parameter around its 

equilibrium value. The second method based on the work of Gleiser, Kolb and Watkins,” 

relies on estimating the thermal nucleation rate of “subcritical bubbles,” which are 

15 



correlation volume fluctuations of one phase inside the other phase. We will argue that 

when applied to the electroweak phase transition, both methods give results which are 

qualitatively consistent with each other, signaling the failure of the naive l-loop potential 

as a valid approximation to study the dynamics of the transition. 

4.1 THERMAL DISPERSION AROUND EQUILIBRIUM 

Consider a system described by some potential which at a given temperature T ex- 

hibits at least a local minimum at some value of the~local order parameter, q5 = (4). For 

example, the electroweak potential of Fig. 1 has a global (and, below TC local) minimum 

at (4) = 0 for all T > T2. If we are interested in studying nucleation below Tc, we should 

require that the system is in a near homogeneous phase characterized by (4) = 0. That 

is, although there will be fluctuations around equilibrium, they should be small enough 

so that when calculating the transition rate the usual boundary conditions at infinity 

apply. However, from our previous discussion, for weakly first-order transitions infrared 

corrections can be important, and large fluctuations around equilibrium are to be ex- 

pected for temperatures below Tc. It is then legitimate to ask if the usual assumption 

of near-homogeneity is valid. In Ref. 16 a simple method was introduced in order to 

answer qualitatively this question. Using a Gaussian approximation to the potential, we 

compare the thermal dispersion of the order parameter around Its equilibrium va!ue for a 

certain length scale r = Iz - y(, denoted by (+(~&))p, to the value of the order param- 

eter at the inflection point of the potential, denoted by &r. Simple physical arguments 

show that the relevant length scale is the correlation length, <.16 If the magnitude of 

the thermal dispersion is comparable to the value of Cp at the inflection point, the system 

has a large probability to overcome the barrier thermally, populating other accessible 
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minima. In equations, if we have 

$4i?Gim@ 5 Pinf - (4)I> (4.1) 

the assumption of near-homogeneity is probably incorrect. In Ref. 16 this condition was 

applied to the top of the barrier instead of the inflection point. That gives a very conser- 

vative estimate, since at the top of the barrier non-linearities are obviously important, 

enhancing the magnitude of the thermal dispersion. Strictly speaking, the Gaussian 

approximation is only valid up to the inflection point. 

In a recent work, Tetradis applied the above method to the electroweak transition 

showing that indeed the probability of fluctuations over the barrier is large.‘s He used 

an approximate expression for calculating (1~5’)s given in Ref. 16. Here we would like 

to compute the thermal dispersion in more detail, and again apply the results to the 

electroweak transition. We will show that the dispersion is still quite large, in qualitative 

agreement with our previous results based on the s-expansion. 

For a free massive scalar field theory in thermodynamic equilibrium at temperature 

T, the two-point function can be written in terms of a zero temperature part and a finite 

temperature part after time ordering asrs 

@#AMY)) = 

d% 1 
+ / (27r)??~~ e&r - 1 

(e-‘Yz-v) + ,w=-9)) ( (4.2) 

where LJ: = k* + m2. 

Here we will focus on the temperature dependent part only. In spherical coordinates 

we can write 

(4.3) 
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Using properties of Bessel functions A(r,p) can be written as [for details see Ref. (20)], 

A(lrt>P) = $ g 
I<1 [mPJrn] 

n-1 l/w ’ 
(4.4) 

where K,(z] is the modified Bessel function of first kind. From the asymptotic properties 

of Bessel functions one obtains, in the high temperature limit, 

T2 
A(0, m/J << 1) = iz, (4.5) 

where we used that p = T-l. We are interested in fluctuations of a correlation volume at 

a temperature T. In the spirit of the Gaussian approximation we will take the mass m in 

the above formula to be the curvature of the potential around its equilibrium point at a 

temperature T, as defined in Eq. (1.9). [This is precisely what is done in the traditional 

analysis of fluctuations in a Ginzburg-Landau model.*r] The correlation length is then 

simply [ = m-r and we can write 

AW),T) = 2T 2 2 d&5Kr [z&%??l; z s m/T. 

The probability that a fluctuation of correlation volume around equilibrium can 

“spread” over the inflection point is then simply, 

P ((4) 4 4~) - exp - f$E~T~n!j;I , 
I 

(4.7) 

where it should be clear that (4) and &r are in general temperature dependent quantities. 

It is straightforward to apply this formula to the electroweak transition at Tc. m*(T) is 

given in Eq. (3.1) and e&r for T < T, is given by 

&,+[i-/qgiEG] . (4.8) 

The results are shown in Fig. 7 as a function of the Higgs mass for MT = 130 GeV. It 

is clear that thermal fluctuations are quite large at Tc, in agreement with our previous 
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results. Since the l-loop potential is evaluated for small fluctuations around the equilib 

rium value, this simple criterion indicates that the l-loop approximation to the effective 

potential is not reliable around Tc.’ 

4.2 SUB-CRITICAL BUBBLES 

We now discuss another criterion to estimate the validity of the l-loop approximation 

to the effective potential, based on the “sub-critical bubbles method” discussed in Ref. 17. 

Since we have recently applied this method to the electroweak potential of Eq. (l.l), we 

will be quite brief here and refer the reader to Ref. 22 for details. 

Consider the electroweak potential of Fig. 1. Below T, a new minimum develops at 

@+ away from the symmetric minimum at (4) = 0. Th ere will be a non-zero probability 

for bubbles of radius R of the new phase at &+ to be thermally nucleated. The thermal 

nucleation rate for producing a bubble of radius R is given by r(R, T) - exp[-F(R)/T], 

where F(R) is the free energy of the fluctuating region of radius R. For T 2 Tc it is clear 

that the larger the bubble the more unfavored it is, since the free energy is a monotonically 

increasing function of R. The bubbles will shrink in a time scale determined by many 

factors. For example, for a curvature dominated motion of the bubble wall, which is 

probably a good approximation close to Tc, the radius of a large bubble shrinks ss t1/3.23 

. Some recent numerical studies showed that even small bubbles persist longer than one 

would na’ively estimate, bouncing back a few times before dissipating all their energy into 

quanta of the field.2d However, due to the exponential suppression in their production 

rate, unless the transition is very weakly first order (with the whole bubble picture being 

invalid in this case), only bubbles with small enough radius can be efficiently produced so 

that at any given time a reasonable fraction of the Horizon volume can be occupied by the 

new phase at 4+. Although there is a distribution of bubbles with different radii, it is clear 
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from the above arguments that bubbles with a correlation volume will be statistically 

dominant. [The kinetics of the transition is bound to be much more complicated than 

these simple arguments may imply. There will be many different processes contributing 

to the number density of bubbles of a given radius as a function of time, such as capture 

and evaporation of particles from bubbles, coalescence due to bubble collisions, shrinking 

of larger bubbles, neighbor-induced nucleation, and possible shape instabilities, to name 

just a few. 25 A quick glance at Fig. 3 should convince the reader of this.] 

The basic idea behind the sub-critical bubbles method is that for sufficiently weak 

first order transitions, the rate for producing bubbles of a correlation volume is quite 

large, so that at any given time there will be an appreciable fraction of the total volume 

occupied by the new phase. If this is the case, the usual assumption of near-homogeneity 

used in vacuum decay calculations is not valid; instead of having critical bubbles being 

nucleated on a background of the me&table phase, nucleation would occur in a back- 

ground which is better described by a dilute gas of small, non-perturbative fluctuations. 

There is no reason to expect that the usual calculation for the decay rate is applicable 

in this case. This method complements the estimates for the thermal dispersion around 

equilibrium discussed in Section 4.1, with the important difference that the subcritical 

bubble calculations do include the non-linear&s in the problem, being by definition 

non-perturbative. 

The free energy of a spherically symmetric fluctuation around equilibrium is 

F(T) = 4x 1 -~~dr[;($)1+V&#,T)]. 

We will focus on the electroweak model at Tc. In principle, there will be fluctuations 

from 4 = 0 to d+ and back, although at Tc the free energies for these fluctuations are 

identical. The rates for the thermal fluctuations can be estimated by making an ansatz 
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for the radial profile of the sub-critical bubbles. Following Ref. 22 we write 

4+(r) = @+exp (-r’/“) , (4.10) 

vwhere 4+(r) corresponds to a bubble of broken phase 4+ nucleated in the symmet- 

ric phase 4 = 0. The parameter e controls the approximate sire of the bubble which 

we take to be the correlation length. Introducing the dimensionless variables X(p) = 

++~(r)/u, t’(T) = e(T)a, B = T/u, and p = ro, we obtain 

F+(B) = r312X:to [~+~(~(82.-812)-Ee~~X++~x~)]. (4.11) 

In Fig. 8 we show F+(Tc)/Tc as a function of the Higgs mass and the top mass. In order 

for subcritical bubbles to be of cosmological relevance, their thermal nucleation rate must 

be considerably larger than the expansion rate of the Universe, I’(<(T),T)/H > 1, with 

H 21 1.66g!12p1/M pn, ,where 9. N 110 is the number of effective relativistic degrees of 

freedom at the electroweak scale. Neglecting pre-factors, this condition can be easily seen 

to lead to the inequality F+(T)/T < 34. From Fig. 8 it is clear that at Tc this condition 

is comfortably satisfied for the present lower bound on the Higgs mass, MN 2 57 GeV, 

for which we obtain r([, Tc)/H - 10s. 

Recently, Dine et al. argued that sub-critical bubbles would not be of relevance for 

most (if not all) the parameter space of the standard model due to the smallness of 

the thermal dispersions around (4) = 0.s We agree with their results for MM - 60 

GeV. However, for larger Higgs masses fluctuations in long wavelengths are quite large, 

contrary to their claim. We hoped to have shown here that both the estimate from 

the thermal dispersion and from subcritical bubbles indicate that there will be large 

fluctuations around equilibrium, signaling the failure of the l-loop potential to describe 

the dynamics of the transition. 
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V. CONCLUSION 

In this work we have argued that it is possible to study the critical behavior of a weak 

first order transition which has a spinodal instability at some temperature T2 by mapping 

its behavior around equilibrium, (4), to an effective Ginzburg-Landau model above its 

critical temperature T2. In this way, both models have the same spinodal instability at 

(4) so that infrared corrections can be estimated from well-known s-expansion methods. 

This approach is completely general and can in principle be applied to any sufficiently 

weak first order transition. It suits the standard electroweak model particularly well due 

to the closeness of its critical temperature Tc to the spinodal instability temperature 

T2. In fact, the difference between the two temperatures should provide a qualitative 

measure of the weakness of the transition. 

Incorporating the s-expansion results leads to a larger correlation in the spatial fluctu- 

ations of the order parameter, which can be translated into a smaller (infrared corrected) 

mass for excitations around (4). Thus, the strength of the transition is considerably 

weaker than one would estimate from the n&e l-loop potential. We do not claim here 

to have obtained the s-corrected effective potential, but an estimate of the infrared cor- 

rections which are not included in the l-loop result. Our results provide a simple way 

to examine the importance of these corrections around Tc, offering a simple way of esti- 

mating the strength of the transition. If the r~ parameter is close to unity at the critical 

temperature TC the transition is well described by the l-loop result. Otherwise, the 

transition is weakly first order, and one should be very careful when adopting the usual 

vacuum decay formalism to study the transition. As a pictorial representation of the 

complexity of the behavior of a weakly first order transition, we show in Fig. 3 the be- 

havior of a 44 model around Tc. For clarity, we show only the black and white values of 

4, defined to be for 6 < 0 and 4 1 0, respectively. The critical behavior of the system 
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is then in the same equivalence class as the 2-dimensional Ising model. This simulation 

is done by starting the system at 4 = +& and T = 0, and by studying the tempera- 

ture behavior of the system by immersing it in a thermal bath at temperature T.15 For 

temperatures just below or above Tc, the large fluctuations around equilibrium are quite 

apparent. In particular, one can picture the behavior of this system just below its critical 

temperature as being qualitatively similar to the behavior of a weak first-order transition 

at its critical temperature. 

We have also discussed two other simple ways of estimating the strength of the transi- 

tion based on the thermal dispersion around equilibrium and on the sub-critical bubbles 

method. When applied to the l-loop electroweak potential both approaches suggest that 

there will be large Ructuations around equilibrium, indicat~ing that the l-loop result does 

not fully describe the dynamics of the transition. In fact, the results here show that the 

actual dynamics of the transition may be much more complex than the usual scenario 

based on vacuum decay calculations. 
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Figure Captions 

FIG. 1. The l-loop electroweak potential at several different temperatures. 

FIG. 2. The parameter z = E*/X*D as a function of the Higgs mass for several values 

of the top quark mass. 

FIG. 3. 2-dimensional simulation of & model for different temperatures. Initiai con- 

ditions were chosen such that at t = 0 the field is in the equilibrium state 4 = +&, given 

by the G-L model at T = 0. 

FIG. 4. The l-loop electroweak potential (solid curves) and the associated G-L model 

of Section 3.1 (dashed curves) for temperatures Tc (a) and T2 (b). A Higgs mass of 100 

GeV and a top quark mass of 130 GeV were chosen. 

FIG. 5. The s-corrected mass as a function of the Higgs mass for several values of the 

top mass. 

FIG. 6. The G-L model obtained by neglecting the left-right symmetry in the elec- 

troweak model and by transforming away its cubic term. 

FIG. 7. The ratio &,,/2A(e) as a function of the Higgs mass for MT = 130 GeV at 

Tc. 

FIG. 8. The free energy of the subcritical fluctuation at the critical temperature as 

a function of the Higgs mass for several values of the top quark mass. 
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